Spectral tuning, fluorescence, and photoactivity in hybrids of photoactive yellow protein, reconstituted with native or modified chromophores.
نویسندگان
چکیده
Photoactive yellow proteins (PYPs) constitute a new class of eubacterial photoreceptors, containing a deprotonated thiol ester-linked 4-hydroxycinnamic acid chromophore. Interactions with the protein dramatically change the (photo)chemical properties of this cofactor. Here we describe the reconstitution of apoPYP with anhydrides of various chromophore analogues. The resulting hybrid PYPs, their acid-denatured states, and corresponding model compounds were characterized with respect to their absorption spectrum, pK for chromophore deprotonation, fluorescence quantum yield, and Stokes shift. Three factors contributing to the tuning of the absorption of the hybrid PYPs were quantified: (i) thiol ester bond formation, (ii) chromophore deprotonation, and (iii) specific chromophore-protein interactions. Analogues lacking the 4-hydroxy substituent lack both contributions (chromophore deprotonation and specific chromophore-protein interactions), confirming the importance of this substituent in optical tuning of PYP. Hydroxy and methoxy substituents in the 3- and/or 5-position do not disrupt strong interactions with the protein but increase their pK for protonation and the fluorescence quantum yield. Both deprotonation and binding to apoPYP strongly decrease the Stokes shift of chromophore fluorescence. Therefore, coupling of the chromophore to the apoprotein not only reduces the energy gap between its ground and excited state but also the extent of reorganization between these two states. Two of the PYP hybrids show photoactivity comparable with native PYP, although with retarded recovery of the initial state.
منابع مشابه
Contrasting the excited-state dynamics of the photoactive yellow protein chromophore: protein versus solvent environments.
Wavelength- and time-resolved fluorescence experiments have been performed on the photoactive yellow protein, the E46Q mutant, the hybrids of these proteins containing a nonisomerizing "locked" chromophore, and the native and locked chromophores in aqueous solution. The ultrafast dynamics of these six systems is compared and spectral signatures of isomerization and solvation are discussed. We f...
متن کاملSpectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface.
Protein-chromophore interactions in photoreceptors often shift the chromophore absorbance maximum to a biologically relevant spectral region. A fundamental question regarding such spectral tuning effects is how the electronic ground state S(0) and excited state S(1) are modified by the protein. It is widely assumed that changes in energy gap between S(0) and S(1) are the main factor in biologic...
متن کاملStructural and Activity Comparison of Native, Apo and Reconstituted Tyrosinase
Background: Mushroom Tyrosinase a potent candidate in clinical studies known as polyphenol oxidase, is a metaloenzyme from the oxidase superfamily widely distributed from lower to higher life forms. It plays a crucial role in sclerotization of exoskeleton in insects, also responsible for skin pigmentation in mammalians. Objective: In this study, after reconstitution of MT by some metal io...
متن کاملUltrafast dynamics of isolated model photoactive yellow protein chromophores: "Chemical perturbation theory" in the laboratory.
Pump-probe and pump-dump probe experiments have been performed on several isolated model chromophores of the photoactive yellow protein (PYP). The observed transient absorption spectra are discussed in terms of the spectral signatures ascribed to solvation, excited-state twisting, and vibrational relaxation. It is observed that the protonation state has a profound effect on the excited-state li...
متن کاملStructure of the photoactive yellow protein reconstituted with caffeic acid at 1.16 AÊ resolution
# 2002 International Union of Crystallography Printed in Denmark ± all rights reserved A structural study is described of the photoactive yellow protein (PYP) reconstituted with the chromophore derivative 3,4-dihydroxycinnamic acid. The crystal structure of PYP reconstituted with this chromophore at 1.16 AÊ resolution is reported in space group P65. This is the ®rst high-resolution structure of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 271 50 شماره
صفحات -
تاریخ انتشار 1996